Minolta X-9 Top Plate Removal and Reassembly

I posted these instructions over on Photrio, but thought I’d post them here as well.

In my last post, I replaced a dud capacitor on a Minolta X-9 that I was given by a friend. The Minolta X-9, otherwise known as the X-300s I believe, is similar to the X-300 and other X-series cameras, but not exactly the same. I couldn’t find specific instructions for working on this camera anywhere. Removing the bottom plate to fix the capacitor is easy, and the X-300 repair manual suffices for many other things, but the top plate is slightly different to the other X-series cameras, so I thought I’d figure out the way to remove it and put it here so others can use it. I mean, it’s really only points 1 and 2 that are different, but sometimes it helps to know things specifically. And I’m starting to think this camera is a bit underrated, once you come to terms with all the plastic.

Sorry for all the dirt in the photos, by the way.

Unless otherwise specified, all screws need a size J000 JIS screwdriver. All screws unscrew anticlockwise like normal.

Removal

1. Remove the finger plate around the shutter button. Prize this up from the front, gently, with a thin plastic tool. You can run this around the edges, but you get more purchase near the shutter button on both sides as there’s a locator pin further down. Just don’t apply too much pressure to the bit that goes around the shutter button because it’s thin.

Minolta X-9 / X-300s top plate removal

Minolta X-9 / X-300s top plate removal

2. There are two screws below the finger plate, marked in yellow. Undo these and you can remove the cover over the shutter speed selection dial and film advance lever screw. (The red arrow is the hole the locator pin goes into.)

Minolta X-9 / X-300s top plate removal

3. Remove the film advance lever screw (red arrow). This needs a size J1 screwdriver.

Minolta X-9 / X-300s top plate removal

4. When you take off the film advance lever, take care about the spring beneath it. This is tricky to get back in – it needs about a 270 degree anticlockwise rotation from its resting state to line up correctly, and you’ll probably need three hands. One end goes into the hole on the edge of the advance lever, the other goes into the hole marked in the second photo.

Minolta X-9 / X-300s top plate removal

Minolta X-9 / X-300s top plate removal

5. Undo the nut around the film advance axle with a spanner wrench.

Minolta X-9 / X-300s top plate removal

6. Take off the obvious top plate screws: two on either side of the viewfinder, one on the left end, and two on the name plate on the front.

Minolta X-9 / X-300s top plate removal

Minolta X-9 / X-300s top plate removal

Minolta X-9 / X-300s top plate removal

7. Take note of the position of your ISO selector and power switch. Undo the screw on the rewind knob. This needs a size J0 screwdriver, and you’ll need to brace the other end of the rewind axle with a cloth-covered screwdriver or similar. Lift off the rewind knob.

Minolta X-9 / X-300s top plate removal

8. Undo the plastic disk with a spanner wrench. This holds the ISO selector wheel in place. There is a circular wave spring below it. Lift off the ISO selector wheel

Minolta X-9 / X-300s top plate removal

Minolta X-9 / X-300s top plate removal

9. You can now take off the top plate. Don’t be too eager, because there are three wires leading to the hot shoe that are soldered on. Desolder them if you need to remove the top plate completely.

Minolta X-9 / X-300s top plate removal

So that’s the top plate removed.

Reassembly

A few pointers on lining things up when reassembling:

– The shutter button has a central pole that goes into a light grey tube near the shutter speed dial. The spring goes on first. There are three tabs around the edge of the button that prevent it from fitting through the top plate, so make sure you put this back before the top plate goes on.

Minolta X-9 / X-300s top plate removal

Minolta X-9 / X-300s top plate removal

– The viewfinder surround is only held in by the top plate screws on either side of it. There are two channels around its edge – the outermost is for attaching an eyecup or some such, and the innermost sits into the top plate. When sitting correctly in the top plate, the tabs with the screw holes fit between the top plate and the camera body. You might need some extra arms to keep this in place while also lining up the shutter button and power switch when you’re putting the top plate back on.

Minolta X-9 / X-300s top plate removal

Minolta X-9 / X-300s top plate removal

– The power switch actuator is the white lever near the rewind pole. The power switch interfaces with the U-shaped indentation at the end of the lever. (The ISO interface pole is behind the axle – just ignore that arrow.)

Minolta X-9 / X-300s top plate removal

– When the top plate is back on, but before you replace the ISO selector wheel, you can tell if the power switch is interfacing properly by viewing the switch through a hole in the top plate.

Switch set to Off: all white (lever is directly below the hole)

Minolta X-9 / X-300s top plate removal

Switch set to On: half white half empty (looking at the edge of the lever through the hole)

Minolta X-9 / X-300s top plate removal

– The ISO selector wheel has a hole on its underside that interfaces with the grey pole you can see at the far left of the two pictures above.

Minolta X-9 Capacitor Replacement

Last year I bought three enlargers from a family friend, who also threw in a bag of other camera stuff. This included a Nikon F4 and a Minolta X-9, neither of which worked properly. The F4 is my dream fix, but it’s a complicated beast. The X-9 (also called/very similar to the X-300S or X-370N) is a simpler machine by anyone’s estimation. Judging by resale prices, it’s considered outright basic. I am getting the impression, though, that it can easily outperform expectations as long as you can look past its gloriously 1980s plastic shell.

Minolta X-9 capacitor repair
The Minolta X-9 in question. The sorry-looking lens is a project for another day.

According to the internet, many of the later Minolta X series cameras are prone to a capacitor failure. An affected camera will appear to work until the shutter button is fully depressed, at which point the camera will power down; because the shutter never releases, the film advance lever can seem stuck. This Minolta X-9 displayed exactly this issue – the light meter would work on a half-press of the shutter button, but then the camera would die as soon as I pressed further.

I opened the bottom of the camera to have a look. Not without difficulty – I stripped the head of the screw nearest the capacitor in question. It was very stiff and I suspect it was slightly corroded by the residue from the burst capacitor, traces of which could be seen on the underside of the base plate. The plastic at the base of the capacitor, between the pins, was protruding further than it should, indicating that it had burst through the bottom and towards the screw.

Minolta X-9 capacitor repair
The old capacitor in place. It had burst out the bottom towards its pins, and you could see some residue nearby.

The most difficult part of this repair, for me, was learning to solder and desolder. This is a skill that I have come to learn is essential for repairing cameras – almost any camera made after 1970 seems to have parts that can only be removed after certain wires are desoldered (even the Voigtländer Bessamatic, which is a chaotic mechanical masterpiece). Thankfully, there is an electronics retailer in Australia that still provides an abundance of educational materials and affordable supplies for learning to solder. I learned the basics by making a small device with two flashing LEDs. This was a bit challenging, as I had decided to use lead-free solder for safety reasons, and my soldering iron tip was old and corroded; things got easier when I replaced the tip, and I was able to complete the device. Then I tried to unsolder it, found this difficult and gave up, and put it back together. As it still worked, I figured this was a good enough start…

Heady with my success, I dived straight into replacing the capacitor on the Minolta X-9. The old capacitor came off easily enough, so I trimmed and bent the pins of the new capacitor (took a while to find replacements with the same specifications and dimensions, but it is possible) and forged ahead. It’s a bit tricky to get the right alignment, since there’s not much support for the capacitor and you’re soldering it to a flexible circuit. I screwed up the alignment at first and had to re-solder it, and given the higher melting point of lead-free solder I was pretty afraid that I’d cooked something. Doubly so, when I put some batteries into the camera and nothing worked at all.

Minolta X-9 capacitor repair
The new capacitor soldered in. Those huge globs of solder are proof that I had only learned to solder recently and opted for the “overkill” approach.

I checked continuity between the capacitor pins and the next components on the flex circuit, and that was all fine. I measured voltage at the flex circuit and it checked out at around 3V, as it should have. But the camera wouldn’t even turn on. I was certain I’d killed it. And it’s not even a nice-looking paperweight.

When nothing works, go back to basics.

To test the camera, I had been using batteries straight out of my Minolta XE-5. These batteries were powering that camera’s light meter just fine, and they were measuring in at the correct voltage, so I assumed they were ok. But then, just in case, I put in a fresh pair of batteries. I pressed the shutter button. It fired. I pushed the film advance lever. It moved. I did it again. And again. And again.

Now, I know this is a basic camera, a manual focus SLR released at the time Minolta was well into its autofocus phase. It has only two or three more functions than the XE-5, which is about 15 years older. And it looks very much like an SLR and Darth Vader’s suit were spliced in a teleporter incident. However, it’s the first camera that I have resurrected from a state of complete malfunction. I’m pretty pleased with that. And in the process, I’ve seen some indications that the functions it does have are well implemented. When I ran a test roll of film through, it was comfortably familiar to shoot with, and it was plastic enough that I didn’t feel compelled to treat it like porcelain, so I quite enjoyed the experience. I might post a review up here sometime.

Minolta XE-5 Film Advance Repair

A couple of months ago, just before the birth of my son, I fixed the film advance on my Minolta XE-5. The lever had not been completing its action properly, and when it got to the end of its rotation there would still be some film winding left to do, so it would just return loosely. It had to be pushed to the end of its travel again before the action would complete, the lever would return under spring action, and the shutter would be unlocked.

The XE-5’s plastic prism cover, though potentially more fragile than metal and (in my opinion) a slightly questionable aesthetic design choice, has the benefit of separating the top plate into three sections: the prism cover, and left and right covers made of metal. This simplifies some repairs, because if you only have to make a repair on one side, you don’t have to disassemble the other.

Minolta XE-5 winder return fix

Minolta XE-5 winder return fix

There’s not too much complicated about the top plate removal beyond making note of where things were aligned. I had the shutter speed dial set to Auto just as a reference (and to keep the dial from being moved), and I left the power selector set to On so that the shutter could be released while disassembled (for testing the winding function). Also important to align correctly is the strangely shaped part below the brass spring in the photo below, which interfaces between the film advance lever and its axle. The easy way to remember its alignment is tho make sure the larger, stronger tongue is on the left, as this is the part that transmits the lever’s force in an anticlockwise rotation.

Minolta XE-5 winder return fix

Once the top right cover is removed, you can just access the rachet that governs disengagement of the film advance lever, which needs to be cleaned to remove the gunk causing the issue. The ratchet is connected to the small brass pin that is between the two arms of a spring – in the photo below, this is below the PCB (gotta love those 1970s electronics!) and just to the right of the silver screw near the strap lug. You can tell that this is gunked up by moving the pin – it may be stiff.

Minolta XE-5 winder return fix

I cleaned the ratchet’s pivot and the end of the ratchet itself (where it engages the toothed plate connected to the film advance axle) with some isopropyl alcohol on the end of a toothpick that I’d whittled to a point, just dabbing on a small drop and waiting for it to dissolve the gunk and evaporate. I then applied a small amount of light synthetic oil to both areas. I could immediately feel that the ratchet moved more smoothly and quickly. I put the strangely shaped part and the advance lever back on top of the film advance axle temporarily and went through the fire-wind sequence a few times to check the repair was effective – the advance lever returned at the end of each stroke as it should, with no extra push necessary.

This camera has the smoothest film advance mechanism I have ever felt. It takes even less effort than a Voigtländer Vito C-series film advance, despite having a much more complicated shutter to charge. In fact, now that it’s fixed, it feels more broken – it is so smooth that it’s difficult to believe it’s working. I am a little bit in awe.

My Dad and my Son

This Canon FT QL was my dad’s camera. My dad passed away when I was 14. The camera is one of the few items of Dad’s that I’ve kept with me as I’ve moved around. It is the camera that I remember him using throughout my childhood, and it captured many of my early moments. Like my scrunched-up face when I ate some orange peel when I was about one, or when I put on one of Dad’s t-shirts and looked like a monk when I was about two.

I started using it a couple of years after Dad passed away, and I learned the real techniques of film photography on this camera. It is fully manual, so it was a steep learning curve, but I borrowed books from the library and looked up websites (few and far between back then) to piece things together. I bought a wide angle lens and a flash to broaden my capabilities (while working a part-time job and couch surfing… I miss the pre-hipster film photography market). Later, the film market dwindled and processing labs became more scarce, but I shot the odd roll of film and went hunting for extant labs. When I first left uni, got a job, and found the still-depressed vintage camera market a little more accessible, I shot with Dad’s camera regularly alongside newer acquisitions.

Even as I still call it, and think of it, as Dad’s camera, it is probably the possession that has most influenced who I am. It is a little hard to describe the significance of an object that both represents and facilitates a shared experience with someone who is gone. I know that Dad looked through the same finder, adjusted the same shutter speed dial and aperture ring, and pressed the same shutter button. I am on the other side of the lens now, but it is the same machine. And the photos he took, even the seemingly unimportant photos of flowers and leaves tucked into the family photo archives (I was very glad to be present when they were discovered, they were so nearly thrown out), reveal thought processes so similar to my own, and now so impossible to deduce through observation or conversation. The experience shared is not just of using the same small machine, but of seeing the world in a similar way. I record shadows of my times and places, and I am simultaneously living out a shadow of Dad recording his times and places, many years before.

My son was born early on an autumn morning. After the midwives had left, my wife and son and I rested for a while. We were exhausted, but we were, for the first time, together as a little family. As every new dad does in this moment, I took out a camera to take photos of my amazing wife holding our newborn. I took out Dad’s camera.

I had been thinking, in the weeks leading up to my son’s birth, that it would be nice to use his camera as a tangible representation of my dad, present in the early moments of my son’s life that I would have shared with him if he was here. So I had bought some fast film that would work well indoors and loaded it up weeks in advance, ready to sling the camera bag over my shoulder in a potential midnight dash to the hospital. And in those moments after we met my son, exhausted and happy in equal measure, I recorded some shadows of a beautiful time. I photographed my son with his extended family as they gleefully came to meet him. I took some photos of my wife and son as we sat with him in our hospital room, stunned, adoring, and weary. I took more when we left the hospital and settled him into our home, his home, as part of our little family.

Dad couldn’t be among the family members who came to meet my son and to help us settle in. It meant a lot to me, though, that I could include him by recording those times in much the same way he would have when he became a father. Looking through the same finder, adjusting the same settings, pressing the same shutter button, allowing a flicker of light to pass through the same lens as when I was a baby and Dad was the exhausted young father full of joy. Twenty years after he passed away, we have shared a new experience: celebrating and documenting the new life of a son.

Voigtlander Vito CLR – Parts Bin Restoration Part 2

Restoring a camera is a twofold operation. You can restore a camera’s function, get it taking photos reliably, make it work the way it should (or as close as possible to how it should). But you can also restore a camera’s appearance, make it look the way it should. On some level, I’m less concerned with the aesthetics of a camera, as long as it doesn’t have a flow-on effect on function. I’d much rather have a working camera that looks a bit scrappy than a shiny camera that can’t take photos. However, if you want to finish the restoration completely, you need to address both aspects.

With this (quite obvious) dichotomy in mind, I followed up my recent work on the shutter of my parts bin Voigtländer Vito CLR with some work on the top cover of the camera, and specifically the control window for the exposure meter (to use the user manual’s terminology). The control window was separated from the cop cover and sitting loose in its hole. A few of the pictures on the internet of Vito CLRs that have the front-to-back oriented light meter show a similar state of affairs, so I think this must be a relatively common occurrence. Looking at the removed window and the underside of the top cover, I’m not surprised – the adhesive is rock-hard and looks quite a lot like rust. I’m a bit confused about how it would have originally been attached; it looks as though the adhesive went part of the way up the angled side of the window, but the hole in the top cover is large enough that this should not have been necessary. Given the state of the adhesive and the pictures of other examples, I’d be surprised if there was an example out there with the window intact in its original position (i.e. not restored), so I may never know.

Voigtländer Vito CLR light meter control window repair

The adhesive was quite stubborn – in fact, it wasn’t until it started dissolving ever so slightly in acetone (nail polish remover) that I realised it definitely wasn’t rust (isopropyl alcohol and naphtha didn’t cut it). The picture below shows how much (or how little) I was able to remove after soaking a tissue in nail polish remover and letting it sit in contact with the adhesive for around 5 minutes, then repeating.

Voigtländer Vito CLR light meter control window repair

To readhere the window to the top cover, I used some pieces of double-sided tape from a craft store. It’s not particularly heavy duty tape, but it’s nevertheless surprisingly tenacious stuff (it stuck to the semi-smoothed remnants of adhesive just fine, as to the mostly cleaned window) and it’s super easy to trim excess away with a craft scalpel. This shows where the tape went (with backing paper still in place; the piece on the right was trimmed down after the window was in place.

Voigtländer Vito CLR light meter control window repair

Initially, I readhered the window without addressing its paint. I think the paint is to add diffuse light to the light meter chamber. The meter (that is, the silhouette of the meter needle and the match needle) is reflected along the length of the camera below the rangefinder and then out through the base of the viewfinder, so I’m guessing (please chime in to correct me if I’m wrong) that the diffuse light helps to provide a more stable reflection in changing light conditions. The meter was quite visible in its current state, and I didn’t have any suitable paint, so I didn’t bother to address this at the time. I did, however, take the opportunity to clean all the viewfinder and rangefinder glass while the top cover was off.

Voigtländer Vito CLR light meter control window repair

Over the next day or so of thinking it over, I eventually realised I wasn’t really happy to leave the job half done. After all, the whole point of this part of the restoration was aesthetic; the meter already worked with its loose window, so why leave the appearance only half addressed? So I bought a paint pen from an office supplies store that was specifically for use on non-porous surfaces. I masked off the top of the meter with some scotch tape and painted the non-angled sides as a test. Getting an even coat was a little challenging at the edges, but it dried on well enough and with two coats it looked reasonably smooth. However, I hit a snag when trying to mask off the curved side of the top of the window – I had thought I could run the craft scalpel around the curved top to get the scotch tape to match the curve, but this proved too difficult. So I didn’t bother. The top of the curved side has a slight lip, and this was enough of a guide for the pen. Again, two coats and it was just about smooth enough, and the lightest of scrapes around the top edges with the scalpel neatened the edges well. I was a little concerned the two coats might be too thick to let much light through, but it’s fairly thin paint and is still translucent. And, when reattached, the window now looks much tidier. I’m not sure how close it looks to the original (it is very white), but it doesn’t look like a stained, half-gone mess anymore.

Voigtländer Vito CLR light meter control window repair

Voigtländer Vito CLR light meter control window repair

When I picked up the camera after first reattaching the window, it felt more solid, more complete. It was like the camera was itself again and knew it. Maybe I was going a bit loopy on acetone fumes but it was a rather satisfying moment. This camera wasn’t in a terrible condition when I bought it from the parts bin (if it had been, I probably wouldn’t have bought it), and these cameras aren’t especially rare or sought-after, but it is a capable little camera that can hold its own in terms of both functionality and image quality, and it needed some attention. I hope that it enjoys its second chance at life, now that it is hale and whole.

Voigtländer Vito CLR

Well, nearly whole. The loop of leatherette around the base of its lens barrel is still missing. But this is Australia. Dressing down is a national pastime.

Voigtlander Vito CLR – Parts Bin Restoration Part 1

Judging by the bulk of my recent camera acquisitions, I have a thing for trying to restore and recover the unloved. This started a while ago, I believe, with my Dad’s old Voigtländer Vito CD. It is clearly broken, and its shutter is gummed up to the point it doesn’t open willingly. I have a theory (one I’m unable to confirm, though production dates for these cameras support it) that Dad dropped the Vito CD and tried unsuccessfully to repair it; he then replaced it with a Vitoret R but wasn’t happy with its lack of a light meter, and so bought the Canon FT QL that is now the heart and soul of my photographic adventures. About 8 years ago I managed to work the Vito CD’s shutter free, but not permanently. I also bought a Zenit E with a broken shutter about that time, which is still in a hundred pieces in a box, so it hasn’t been all smooth sailing for the cameras I try to restore. But the Vito CD has stuck in my mind as something I have to finish one day.

With that in mind, I bought a Voigtländer Vito CLR from a parts bin at a camera fair. I asked what was wrong with it and the seller didn’t give a definite answer. The shutter speed ring was quite stiff, and the light meter window was loose, but the rangefinder appeared functional and the body was in fairly good condition. For $10 it would make a good parts camera, or a bargain of a baby rangefinder if I could get it working. As the top model of the Vito range, it has both a lightmeter like the Vito CD and a rangefinder like Dad’s old Vitoret R; it also has the Color-Skopar 50mm f/2.8 lens that is reputed to be a fair bit better than the Color-Lanthar lenses of the other two. It wasn’t a hard decision to buy it. And when it became evident that most of my other repair projects require (de)soldering work, I decided to take on the shutter speed ring repair, suspecting that there might be some misaligned or broken parts inside.

Voigtländer Vito CLR shutter

It’s relatively easy to get to the shutter mechanism of Vito C series cameras. At least, thus sayeth the internet. All possible sources I found, including the Voigtländer repair document from Mike Butkus and another I obtained on a forum, say the first step is to remove the three retaining screws on the focus ring. But I couldn’t find these three screws for days. I began to suspect, despite the silence of the repair documents on this step, that the focus ring’s distance gauge would have to be removed. I also suspected (based on a failed approach to the Vito CD’s shutter issues) that the distance gauge would be springy and send screws flying if I wasn’t careful, but it was relatively well behaved, and sure enough the three retaining screws were underneath.

Voigtländer Vito CLR shutter

Dear future self: do yourself a favour, and mark your lens elements properly before removing them. I don’t quite remember whether I didn’t mark the front element at all, or just marked it with lead pencil. Either way, by the time I was putting the front element back on the lens, I was flying blind. Set the lens to infinity before removing the distance gauge, don’t twist the focus ring when you’re taking it off, and mark both the casing of the lens element and a reference point below it so that you’ve got something to work with. Also, find the point at which the element comes free when unscrewing it, and make a mark (probably a slightly different mark to the first) on the casing in line with your reference point so that you know approximately where to find that point again. Save yourself a headache.

Anyhow, below the front lens element is the middle element, and this needs to be removed using a spanning wrench. The holes for the wrench are hard up against the inside edge of the screw thread for the front element, so the bulky tips of my regular lens wrench wouldn’t fit. My first attempted workaround was to use a pair of drafting compasses. I had bought two pair at a newsagency, the cheap kind you used to draw lines with at school, and swapped the arms so that one pair had two pointy ends. This didn’t work so well. It spanned just fine, but it didn’t wrench – it bent, and one of the points fell down onto the middle lens element. A fine lesson in the relationship between the quality of your tools and the likelihood of success. So instead I took a lateral approach to using the straight-tipped spanning wrench I had initially rejected, removing the end of one arm from the cross-piece so that the arm could be held at an angle to the other arm. Taking care to hold the wrench arms securely in place, this worked perfectly.

Voigtländer Vito CLR shutter

From this point on, disassembly generally followed the repair manual’s guidance. Once I’d removed the shutter’s front plate, I found that everything was basically in order – no obviously broken parts and everything seemed relatively clean. On further inspection, I found that the shutter speed ring was only stiff when it was linked to the brass ring around the outside of the helicoid in the photo below. This brass ring also has a link to the aperture ring, so I assume it is the actuator for the light meter match needle, as the match needle moves when you move either of the shutter speed ring or the aperture ring. I cleaned up this helicoid using isopropyl alcohol on cotton buds (not really sufficient, I know, but the best I could manage without a full tear-down and I wasn’t feeling confident enough to attempt that) and re-lubricated it with Helimax-XP. This allowed the shutter speed ring, when linked to the brass ring, to move freely enough that it could be adjusted with one hand – a satisfying improvement. While I was in there, I also dabbed some microdots of camera oil on the gear shafts for the self-timer and the shutter mechanism. The self-timer actually runs through its full operation now, which is some kind of miracle.

Voigtländer Vito CLR shutter

It was while putting everything back together that I realised the stupidity of using lead pencil to mark lens element alignments. Despite getting it all back together in a fairly convincing-looking way by tracing back my steps (with some fascinating side journeys, like observing how the actuator pin for the rangefinder works), I couldn’t be sure that the focus was accurate. I had read on the interwebs about using a ground glass across the film plane to test focus, and of using frosted scotch tape if you don’t have a spare ground glass. I also read about using a piece of CD case with tape stuck to it, as it’s more rigid and not prone to sagging. This is a great idea, but CD cases aren’t trivial to cut neatly, so I cut a piece of overhead transparency to the width of 35mm film and used that instead. It sits easily on the film rails and is quite rigid enough to avoid problems.

Voigtländer Vito CLR shutter

As I found when fixing the Tokina lens, it’s hard to find somewhere to focus to infinity when you live on the bottom floor of an apartment block. I headed out to the street and ended up propping the camera on the dashboard of my car to get a decent view of a mess of powerlines about 50 metres away. I set the shutter to B and held it open with one hand, and turned the front lens element using the other, then used a magnifying glass to view the image displayed on the pseudo-glass. When I had achieved as much resolution as possible between the power lines (which are quite small targets – the clarity of an image on frosted scotch tape is adequate but not stellar) I marked the casing of the lens element and a reference point with some fine scratches, then headed back inside to reattach the focus ring. With everything reassembled, the only thing left was to test it. The test film images below (shot on Lomography 400 colour film) show that focus is accurate. Lucky save! But also a pretty effective method.

Voigtlander Vito CLR test film

Voigtlander Vito CLR test film

Voigtlander Vito CLR test film

I quite enjoyed shooting this test roll. The Voigtländer Vito CLR feels quite familiar after shooting a Vito CD and a Vitoret R, but the combination of rangefinder and light meter in one package makes for a more complete camera. Looking at the test images, I’m also impressed by the clarity of the Color-Skopar lens when compared to the Color-Lanthars of the other two cameras, which can be softer if still quite pleasant (images from both can be found a fair way back on my Flickr photostream). The Vito CLR is, somehow, a more serious camera tucked into the same round, unassuming (even with all the chrome), silent-as-a-mouse little Vito C-series body. Ten dollars and a few hours’ work is a small price to pay to give a good camera a second chance at life.

Olympus OM-D E-M5 Mark II Astrophotography Part 2

I wrote earlier about my astrophotography attempts with the Olympus OM-D E-M5 Mark II. Over the Christmas holidays, I had a couple of chances to use the SkyWatcher Star Adventurer. However, they were very short chances. It turns out that polar alignment in the southern hemisphere is rather difficult, even with a polar scope. It took me several nights before I found the right stars and achieved an acceptable alignment. And then, just as I could start taking well-aligned photos, the camera battery died. I usually have a backup battery charged — not this time. I had only managed one set of 10 and a few other test photos. But this is one of the tests:

Carina Nebula

This is a crop of an out-of-camera JPEG that shows the Carina Nebula taken from Canberra. It was a 50s exposure taken with a Nikkor-H 85mm f1.8 lens (vintage ftw). Click through to Flickr to see it properly – there’s no noticeable star trailing, and the increase in definition of the nebula compared to Deep Sky Stacker stacks of single-digit seconds exposures is quite satisfying. Obviously there are still several issues, particularly fringing and overal sharpness; I think my techniques in both cameracraft and photoshop are to blame there.

Unfortunately, it was fairly rainy for the rest of the holiday, so I didn’t get any more chances for astrophotography. C’est la vie.

Canon A-1 wheeze fix

There’s a well-known issue with Canon A series cameras where the mirror damper mechanism’s lubrication dries out and the mechanism becomes slow and noisy. The noise sounds to me like a wheeze, but other people call it a squawk or a squeal or a screech. The human ability to be flexible with onomatopoeic terminology is still an advantage that we have over the computers that will one day rule us, but it does make it a little bit more challenging to google.

I bought an A-1 recently, and apart from the wheeze it was in pretty good condition. I decided to fix the wheeze. There are quite a lot of methods going around the internet, but they fall into one of two categories based on how you re-lubricate the mirror damper:

– Through the bottom of the camera

– Through one of the lens mount screw holes

There’s also a lot of really bad advice out there about spraying WD-40 in towards the mechanism. This is like using a shotgun to nail a picture to the wall. It’s not the right kind of tool, in the first place; even though a shotgun and a hammer/nail combo would both end up putting a hole of some kind in the wall, the shotgun will make the wrong kind of hole. WD-40 is only partly a lubricant; when sprayed, it goes everywhere and gets sticky over time. See my previous posts for what I think about sticky substances around cameras. For this fix, you need a tiny drop of the right kind of lubricant in a very precise location. Other fixes online suggested dropping oil into the camera body from the bottom of the camera, and that’s bad because it’s not precise, and there are things (i.e. the focusing screen) that you really don’t want to get oil on.

The most precise fixes involved using a long needle to place a tiny drop of oil on the mirror damper mechanism. Using a long, straight needle from the bottom of the camera seems to be a fairly common way to do this; however, this seemed to require a fairly precise guess about where the end of the needle was. If you go in via the top-left (looking at the front of the camera) lens mount screw with a curved needle, as described in this video, you can get a bit more feedback.

Canon A-1 Wheeze Fix

I used a 25-gauge needle that I curved a little more than the needle in the video. With this curvature, I could find the axle that needed lubrication and feel that the end of the needle was in the right place by moving it back and forth across the curved top of the axle. With the needle on top of the axle, I could also move it side to side to make sure that the needle point was close to the gear. I practiced this a few times before applying the oil. I also practiced making a tiny bead of oil on the end of the needle so I knew how much pressure to apply to the syringe – really not much at all!

Canon A-1 Wheeze Fix

The first few shutter releases sounded about the same. I waited about a minute, tried again, and the noise was getting softer but was still there. After about 5 minutes, the noise was gone, and has stayed gone.

I would very much recommend the method of re-lubricating the mirror damper mechanism through the screw hole. A blunt-end syringe needle of the kind I used here can be gently curved with some careful pressure from round-nosed pliers, giving a tool that provides enough feedback to be sure of your accuracy.

Tokina SD 28-70mm lens focus ring repair

A little while ago, I wrote about fixing the zoom ring on the Tokina SD 28-70mm lens that I got with a parts camera. Fixing the focus ring took a little more effort, and it needed to be done during the day so I could test infinity focus with a distant object, but it followed roughly the same principles.

As with the zoom ring, the focus ring was held together by scotch tape as suggested in this MFlenses forum post. The scotch tape’s adhesive had degraded to the point it was a slimy mess. However, the focus ring’s function is a little different. Below the focus ring rubber is a join between two parts: the rearmost is a metal ring that bears the distance markers and the focus stops, and the foremost is a metal ring that forms part of the front lens group’s mounting (on this lens, the front group rotates when focusing). The ring with the markings can come away from the front ring and move a considerable way down the lens barrel, which lets the front group move freely. Calibration of focus depends on sticking the two rings together in just the right alignment, ideally aligning the infinity marking with the correct focus stop when the lens is perfectly focused at infinity.

Tokina SD 28-70mm lens focus ring repair

Because the ring with the markings can move a long way down the lens barrel, the scotch tape adhesive had a lot more scope to get into the wrong places. It soon became evident that I needed to remove the front element to clean it all up. And it’s just as well I did — it seems that someone had attempted this repair in the past, as there was a great big fingerprint on the rear lens element of the front group. I hadn’t noticed this when inspecting the lens optics, but I was grateful for the opportunity to clean it up.

Tokina SD 28-70mm lens focus ring repair

Once cleaned up, I reattached the front element (I don’t think I got the alignment correct, but as the front element rotates on this lens I don’t think it matters greatly), then put it on a camera and went outside. I focused the lens on an apartment block about 10km away by rotating the front element directly, using the camera’s split image to get a decent focus. Then, I aligned the markings ring with the infinity focus stop and used a small piece of scotch tape to fix it in place. Then I checked by focusing on closer things then back to the apartment block, and also by focusing at 28mm zoom instead of 70mm. I got it as close as I could, erring beyond infinity slightly if anything.

Tokina SD 28-70mm lens focus ring repair

I fixed the ring in place more securely with two more pieces of scotch tape, then put the focus ring rubber back on. This one hadn’t stretched like the zoom one had, so it didn’t need any padding.

Tokina SD 28-70mm lens focus ring repair

With both rings repaired, the lens is now basically back to normal. It’s not the most amazing of lenses, and it has a strange rotational feeling when taking a photo (possibly the aperture mechanism is a bit out of alignment), so it might need some further work. However, it’s much more usable than when I got it, so I count it as a win so far.

Astrophotography with the Olympus OM-D E-M5 Mark II

Compromise can be a good thing. A couple of years ago, I got interested in astrophotography through looking at NASA’s Astronomy Picture Of the Day, and then I took a photo of a conjunction of Venus and Jupiter on a Canon PowerShot SX120IS digital point-and-shoot that happened to capture two Galilean moons.

Basic, but I was hooked. It wasn’t long before room was being made in the budget for a new digital camera. We decided on a compromise between astrophotographical aspirations and family use; I was pretty keen for a Canon DSLR of some kind, but the size and waterproofing and functions of the Olympus OM-D E-M5 Mark II won out. I’m glad, because it’s a fantastic camera. It’s easy to use, but it doesn’t dumb down operation in the way nearly everything is trying to do these days. It’s got a list of functions as long as your arm, but it’s small and light enough for my 3yo niece to hold and use it herself (with supervision). It’s weatherproofed. It takes many styling cues from the Olympus OM-1, which is just a gorgeous camera. And it’s mirrorless, so adapting old/manual focus lenses and maintaining infinity focus is cheap. The picture below has it attached to a Canon FL 200m f3.5 lens and 2x teleconverter, just for kicks.

DSC_1251

I really enjoy shooting with it. It’s an enjoyable camera and it can handle just about anything you throw at it. But its Micro Four Thirds sensor isn’t quite optimal for for astrophotography – a bit on the small and noisy side. I’m still working on getting the settings right to reduce sensor noise for general wide field and deep field astro work, but below are some I’ve managed.

20161002 Milky Way 5
Milky Way from Canberra
Olympus M.Zuiko 17mm f1.8 at f2.2
ISO 8000
170 x 1s exposures, stacked in Deep Sky Stacker, processed in Lightroom (I think)

 

Orion nebula
Orion Nebula from Sydney
Canon FL 200mm f3.5 at f3.5
ISO 800
~250 x 1s exposures, stacked in Deep Sky Stacker, processed in Photoshop

 

LMC 1
Large Magellanic Cloud from Canberra
ISO 3200
~50 x 10s exposures, stacked in Deep Sky Stacker, processed in Lightroom and Photoshop

These are all taken on a fixed tripod, hence the low exposure times. However, I’ve recently got a SkyWatcher Star Adventurer tracking mount, so I’m pretty keen to see what I can do with that once I get the hang of using it. Hopefully I can also keep working on overcoming the camera’s noise issues with some magical alignment of the settings. Just need some clear nights…